2,034 research outputs found

    Quantifying the invisible audience in social networks

    Get PDF
    This paper combines survey and large-scale log data to examine how well users’ perceptions of their audience match their actual audience on Facebook.AbstractWhen you share content in an online social network, who is listening? Users have scarce information about who actually sees their content, making their audience seem invisible and difficult to estimate. However, understanding this invisible audience can impact both science and design, since perceived audiences influence content production and self-presentation online. In this paper, we combine survey and large-scale log data to examine how well users’ perceptions of their audience match their actual audience on Facebook. We find that social media users consistently underestimate their audience size for their posts, guessing that their audience is just 27% of its true size. Qualitative coding of survey responses reveals folk theories that attempt to reverse-engineer audience size using feedback and friend count, though none of these approaches are particularly accurate. We analyze audience logs for 222,000 Facebook users’ posts over the course of one month and find that publicly visible signals — friend count, likes, and comments — vary widely and do not strongly indicate the audience of a single post. Despite the variation, users typically reach 61% of their friends each month. Together, our results begin to reveal the invisible undercurrents of audience attention and behavior in online social networks.Authored by Michael S. Bernstein, Eytan Bakshy, Moira Burke and Brian Karrer

    Designing and Deploying Online Field Experiments

    Full text link
    Online experiments are widely used to compare specific design alternatives, but they can also be used to produce generalizable knowledge and inform strategic decision making. Doing so often requires sophisticated experimental designs, iterative refinement, and careful logging and analysis. Few tools exist that support these needs. We thus introduce a language for online field experiments called PlanOut. PlanOut separates experimental design from application code, allowing the experimenter to concisely describe experimental designs, whether common "A/B tests" and factorial designs, or more complex designs involving conditional logic or multiple experimental units. These latter designs are often useful for understanding causal mechanisms involved in user behaviors. We demonstrate how experiments from the literature can be implemented in PlanOut, and describe two large field experiments conducted on Facebook with PlanOut. For common scenarios in which experiments are run iteratively and in parallel, we introduce a namespaced management system that encourages sound experimental practice.Comment: Proceedings of the 23rd international conference on World wide web, 283-29

    Mosaic: Designing Online Creative Communities for Sharing Works-in-Progress

    Full text link
    Online creative communities allow creators to share their work with a large audience, maximizing opportunities to showcase their work and connect with fans and peers. However, sharing in-progress work can be technically and socially challenging in environments designed for sharing completed pieces. We propose an online creative community where sharing process, rather than showcasing outcomes, is the main method of sharing creative work. Based on this, we present Mosaic---an online community where illustrators share work-in-progress snapshots showing how an artwork was completed from start to finish. In an online deployment and observational study, artists used Mosaic as a vehicle for reflecting on how they can improve their own creative process, developed a social norm of detailed feedback, and became less apprehensive of sharing early versions of artwork. Through Mosaic, we argue that communities oriented around sharing creative process can create a collaborative environment that is beneficial for creative growth

    Analytic Methods for Optimizing Realtime Crowdsourcing

    Get PDF
    Realtime crowdsourcing research has demonstrated that it is possible to recruit paid crowds within seconds by managing a small, fast-reacting worker pool. Realtime crowds enable crowd-powered systems that respond at interactive speeds: for example, cameras, robots and instant opinion polls. So far, these techniques have mainly been proof-of-concept prototypes: research has not yet attempted to understand how they might work at large scale or optimize their cost/performance trade-offs. In this paper, we use queueing theory to analyze the retainer model for realtime crowdsourcing, in particular its expected wait time and cost to requesters. We provide an algorithm that allows requesters to minimize their cost subject to performance requirements. We then propose and analyze three techniques to improve performance: push notifications, shared retainer pools, and precruitment, which involves recalling retainer workers before a task actually arrives. An experimental validation finds that precruited workers begin a task 500 milliseconds after it is posted, delivering results below the one-second cognitive threshold for an end-user to stay in flow.Comment: Presented at Collective Intelligence conference, 201
    • …
    corecore